

Электрический угол 2160 ° Воспроизводимость 3.6 ° Температурный коэффициент делителя напряжения 50 ppm Рекомендуемый рабочий ток в цепи ползунка макс. 1 µA Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/4 Мин. срок службы (электрический) 15 млн. обор Механические данные макс. 1800 °/s	г диапазона РС
Независимая линейность ±2 % о Электрический угол 2160 ° Воспроизводимость 3.6 ° Гемпературный коэффициент делителя напряжения 50 ррт Рекомендуемый рабочий ток в цепи ползунка макс. 1 µA Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/44 мин. срок службы (электрический) 15 млн. обор Механические данные Механические данные Механический диапазон значений 6 обор Скорость перемещения макс.1800 °/s мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °С Гемпература хранения -25 +75 °С)°C
Электрический угол 2160 ° Воспроизводимость 3.6 ° Гемпературный коэффициент делителя напряжения 50 ppm Рекомендуемый рабочий ток в цепи ползунка макс. 1 µA Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/44 Мин. срок службы (электрический) 15 млн. обор Механические данные макс.1800 °/s Скорость перемещения макс.1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Гемпература хранения -25 +105 °C)°C
Заспроизводимость 3.6 ° Гемпературный коэффициент делителя напряжения 50 ррм Рекомендуемый рабочий ток в цепи ползунка макс. 1 µA Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/44 Мин. срок службы (электрический) 15 млн. обор Механические данные Механический диапазон значений 6 обор Скорость перемещения макс.1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °С Гемпература хранения -25 +105 °С)°C
Гемпературный коэффициент делителя напряжения 50 ррм Рекомендуемый рабочий ток в цепи ползунка макс. 1 µA Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/44 Мин. срок службы (электрический) 15 млн. обор Механические данные Механический диапазон значений 6 обор Скорость перемещения макс. 1800 %/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °С Гемпература хранения -25 +105 °С)°C
Рекомендуемый рабочий ток в цепи ползунка макс. 1 µA Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/4 Мин. срок службы (электрический) 15 млн. обор Механические данные Механический диапазон значений 6 обор Скорость перемещения макс. 1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °С Гемпература хранения -25 +105 °С)°C
Макс. допустимый ток в цепи ползунка при неисправности 5 mA Нагрузка Р 0.5 W/40 Мин. срок службы (электрический) 15 млн. обор Механические данные 6 обор Механический диапазон значений 6 обор Скорость перемещения макс.1800 %s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Гемпература хранения -25 +105 °C	
Нагрузка Р 0.5 W/44 Мин. срок службы (электрический) 15 млн. обор Механические данные Механический диапазон значений 6 обор Скорость перемещения макс.1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °С Гемпература хранения -25 +105 °С	
Мин. срок службы (электрический) 15 млн. обор Механические данные 6 обор Механический диапазон значений 6 обор Скорость перемещения макс.1800 %s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	
Механические данные 6 обор Окорость перемещения макс.1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	отов вала
Механический диапазон значений 6 обор Скорость перемещения макс.1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	
Скорость перемещения макс.1800 °/s Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	
Мин. срок службы (механический) 15 млн. обор Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	отов вала
Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	
Рабочая температура -25 +75 °C Температура хранения -25 +105 °C	отов вала
Класс защиты IP65	
<u>Нормы</u>	
Сопротивление изоляции (500 VDC, 1bar, 2s) 1 GOh	m
Напряжение пробоя (VAC, 50Hz, 1min, 1bar) 1 kV	
Вибрация (Amax = 0.75mm, f = 30 2000 Hz) 10	
Ударная нагрузка (полусинус, 7 ms) 30 g	

Применение

• Автопогрузчики

<u>Особенности</u>

- Особо малые габариты
- 6 оборотов
- Муфта скольжения в механических конечных точках (проворачиваемая)
- 15 млн. оборотов вала
- Отличное разрешение менее 0,1%

Опции

- Диаметр вала 6.35 mm (Макс. длина 25 mm)
- Диаметр вала 3 mm (Макс. длина 10 mm)
- Длина кабеля под заказ клиента
- Тандемное исполнение
- Защитное сопротивление ползунка
- Интегрированная электроника
- Клеммные зажимы для кабеля

Изменение технических данных допускается / По состоянию на 15 ноября 2005 г.

<u>Электрические данные</u>		
Сопротивление	1/5/10	kOhm
Погрешность сопротивления	±20	%
Независимая линейность	±0.5	% от диапазона
Электрический угол	3240	0
Воспроизводимость	3.24	0
Температурный коэффициент делителя напряжения	50	ppm/°C
Рекомендуемый рабочий ток в цепи ползунка	макс. 1	μΑ
Макс. допустимый ток в цепи ползунка при неисправности	5	mA
Нагрузка Р	0.25	W/40°C
Мин. срок службы (электрический)	15 млн.	оборотов вала
<u>Механические данные</u>		
Механический диапазон	10	оборотов вала
Скорость перемещения	макс. 1800	°/s
Мин. срок службы (механический)	15 млн.	оборотов вала
Рабочая температура	-25 +75	°C
Температура хранения	-25 +105	°C
Класс защиты	IP65	
Нормы		
Сопротивление изоляции(500 VDC, 1bar, 2s)	1	GOhm
Напряжение пробоя (VAC, 50Hz, 1min, 1bar)	1	kV
Вибрация (Amax = 0.75mm, f = 30 2000 Hz)	10	g
Ударная нагрузка (полусинус. 7 ms)		
Ударная нагрузка (полусинус, 7 ms)	30	g
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		
Ударная нагрузка (полусинус, 7 ms)		

Применение

• Автопогрузчики

<u>Особенности</u>

- Особо малые габариты
- 10 оборотов
- Муфта скольжения в механических конечных точках (проворачиваемая)
- 15 млн. оборотов вала
- Отличное разрешение менее 0,1%

Опции

- Диаметр вала 6.35 mm (Макс. длина 25 mm)
- Диаметр вала 3 mm (Макс. длина 10 mm)
- Длина кабеля под заказ клиента
- Тандемное исполнение
- Защитное сопротивление ползунка
- Интегрированная электроника
- Клеммные зажимы для кабеля

Изменение технических данных допускается / По состоянию на 15 ноября 2005 г.

Эпектрические панные		
<u>Электрические данные</u> Сопротивление	1/5/10	kOhm
Сопротивление Погрешность сопротивления	±20	%
Независимая линейность	±0.25	% от диапазона
Электрический угол	8280	o OT Avianasona
Воспроизводимость	3.32	0
Температурный коэффициент делителя напряжения	50	ppm/°C
Рекомендуемый рабочий ток в цепи ползунка	макс. 1	μΑ
	5	mA
Макс. допустимый ток в цепи ползунка при неисправности	0.25	W/40°C
Нагрузка Р	0.25 15 млн.	
Мин. срок службы (электрический)	ID MJIH.	оборотов вала
Механические данные		
—————————————————————————————————————	25	оборотов вала
Скорость перемещения	макс. 1800	°/s
Mин. срок службы (механический)	15 млн.	оборотов вала
Рабочая температура	-25 +75	°C
Гемпература хранения	-25 +105	°C
Класс защиты	IP65	
<u> Нормы</u>		
Сопротивление изоляции (500 VDC, 1bar, 2s)	1	GOhm
Напряжение пробоя(VAC, 50Hz, 1min, 1bar)	1	kV
Вибрация (Amax = 0.75mm, f = 30 2000 Hz)	10	g
Ударная нагрузка (полусинус, 7 ms)	30	g
		3

Применение

• Автопогрузчики

<u>Особенности</u>

- Особо малые габариты
- 25 оборотов
- Муфта скольжения в механических конечных точках (проворачиваемая)
- 15 млн. оборотов вала
- Отличное разрешение менее 0,1%

Опции

- Диаметр вала 6.35 mm (Макс. длина 25 mm)
- Диаметр вала 3 mm (Макс. длина 10 mm)
- Длина кабеля под заказ клиента
- Тандемное исполнение
- Защитное сопротивление ползунка
- Интегрированная электроника
- Клеммные зажимы для кабеля

Изменение технических данных допускается / По состоянию на 15 ноября 2005 г.

<u>Электрические данные</u>		
Сопротивление	1/5/10	kOhm
Тогрешность сопротивления	±20	%
Независимая линейность	±0.25	% от диапазона
Электрический угол	17280	0
Воспроизводимость	3.46	0
Гемпературный коэффициент делителя напряжения	50	ppm/°C
Рекомендуемый рабочий ток в цепи ползунка	макс. 1	μΑ
Макс. допустимый ток в цепи ползунка при неисправности	5	mA
Нагрузка Р	0.25	W/40°C
Mин. срок службы (электрический)	15 млн.	оборотов вала
Механические данные		
Механический диапазон значений	50	оборотов вала
Скорость перемещения	макс. 1800	°/s
	15 млн.	оборотов вала
Рабочая температура	-25 +75	°C
Гемпература хранения	-25 +105	°C
(ласс защиты	IP65	
<u> Нормы</u>		
Сопротивление изоляции (500 VDC, 1bar, 2s)	1	GOhm
Напряжение пробоя(VAC, 50Hz, 1min, 1bar)	1	kV
Вибрация (Amax = 0.75mm, f = 30 2000 Hz)	10	g
/дарная нагрузка (полусинус, 7 ms)	30	g
Habitan transform (transform) 4, 1 may		3

Применение

• Автопогрузчики

<u>Особенности</u>

- Особо малые габариты
- 50 оборотов
- Муфта скольжения в механических конечных точках (проворачиваемая)
- 15 млн. оборотов вала
- Отличное разрешение менее 0,1%

<u>Опции</u>

- Диаметр вала 6.35 mm (Макс. длина 25 mm)
- Диаметр вала 3 mm (Макс. длина 10 mm)
- Длина кабеля под заказ клиента
- Тандемное исполнение
- Защитное сопротивление ползунка
- Интегрированная электроника
- Клеммные зажимы для кабеля

Изменение технических данных допускается / По состоянию на 15 ноября 2005 г.

<u>Электрические данные</u>		
Сопротивление	1/5/10	kOhm
Погрешность сопротивления	±20	%
Независимая линейность	±0.25	% от диапазона
Электрический угол	34560	۰
Воспроизводимость	3.46	•
Температурный коэффициент делителя напряжения	50	ppm/°C
Рекомендуемый рабочий ток в цепи ползунка	макс. 1	μΑ
Макс. допустимый ток в цепи ползунка при неисправности	5	mA
Нагрузка Р	0.25	W/40°C
Мин. срок службы (электрический)	15 млн.	оборотов вала
<u>Механические данные</u>		
Механический диапазон	100	оборотов вала
Скорость перемещения	макс. 1800	°/s
Мин. срок службы (механический)	15 млн.	оборотов вала
Рабочая температура	-25 +75	°C
Температура хранения	-25 + 105	°C
Класс защиты	IP65	
Нормы		
Сопротивление изоляции(500 VDC, 1bar, 2s)	1	GOhm
Напряжение пробоя (VAC, 50Hz, 1min, 1bar)	1	kV
Вибрация (Amax = 0.75mm, f = 30 2000 Hz)	10	g
Ударная нагрузка (полусинус, 7 ms)	30	g
	30	3
	30	3
		J
		3
		J
		J
		J

Применение

• Автопогрузчики

<u>Особенности</u>

- Особо малые габариты
- 100 оборотов
- Муфта скольжения в механических конечных точках (проворачиваемая)
- 15 млн. оборотов вала
- Отличное разрешение менее 0,1%

Опции

- Диаметр вала 6.35 mm (Макс. длина 25 mm)
- Диаметр вала 3 mm (Макс. длина 10 mm)
- Длина кабеля под заказ клиента
- Тандемное исполнение
- Защитное сопротивление ползунка
- Интегрированная электроника
- Клеммные зажимы для кабеля

Изменение технических данных допускается / По состоянию на 15 ноября 2005 г.

